Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin.

نویسندگان

  • Alison K Holzer
  • Gerald H Manorek
  • Stephen B Howell
چکیده

The goal of this study was to determine the ability of the major copper influx transporter CTR1 to mediate the cellular accumulation of cisplatin (DDP), carboplatin (CBDCA), and oxaliplatin (L-OHP). Wild-type murine embryonic fibroblasts (CTR1+/+) and a subline in which both alleles of CTR1 were deleted (CTR1-/-) were tested for their ability to accumulate platinum when exposed to increasing concentrations of DDP, CBDCA, or L-OHP for 1 h. They were also tested for their sensitivity to the growth-inhibitory effect of each drug. Platinum content was measured by ion-coupled plasmon mass spectroscopy. The experimental model was validated by measuring copper accumulation and cytotoxicity. CTR1-/- cells accumulated only 5.7% as much copper as CTR1+/+ cells during a 1-h exposure to 2 microM copper. When exposed to DDP, CBDCA, or L-OHP at 2 microM, accumulation in the CTR1-/- cells was only 35 to 36% of that in the CTR1+/+ cells. When tested at a 5-fold higher concentration, this deficit remained for DDP and CBDCA, but accumulation of L-OHP was no longer CTR1-dependent. There was an association between the effect of loss of CTR1 function on uptake of the platinum drugs and their cytotoxicity. The CTR1-/- cells were 3.2-fold resistant to DDP, 2.0-fold resistant to CBDCA, but only 1.7-fold resistant to L-OHP. Thus, whereas CTR1 controls the cellular accumulation of all three drugs at low concentrations, accumulation of L-OHP is not dependent on CTR1 at higher concentrations. We conclude that L-OHP is a substrate for some other cellular entry mechanism, a feature consistent with its different clinical spectrum of activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs.

The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper from the extracellular space. In this study, we used an isogenic pair of CTR1(+/+) and CTR1(-/-) mouse embryo fibroblasts to examine the contribution of CTR1 to the influx of cisplatin (DDP), carboplatin (CBDCA), oxaliplatin (L-OHP), and transplatin. Exposure to DDP triggered the rapid degradation of CTR1, suggest...

متن کامل

The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae.

Resistance to cisplatin (DDP) is often accompanied by impaired accumulation in mammalian cells. The mechanism of impaired DDP accumulation is unknown, but copper uptake is diminished as well. We investigated the ability of the copper transporter CTR1 to control the accumulation of DDP in Saccharomyces cerevisiae. Parallel studies of copper and DDP cellular pharmacokinetics were carried out usin...

متن کامل

Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs.

Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs...

متن کامل

The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells.

Cells selected for resistance to cisplatin are often cross-resistant to copper and vice versa, and the major copper influx transporter copper transport protein 1 (CTR1) has been shown to regulate the uptake of cisplatin, carboplatin, and oxaliplatin in yeast. To further define the role of hCTR1 in human tumor cells, the ovarian carcinoma cell line A2780 was molecularly engineered to increase ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 2006